1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
use std::{
cell::RefCell,
future::Future,
rc::Rc,
task::Poll,
time::{Duration, Instant},
};
use crate::{
core::{app, messages::Frame},
entity,
global::{OkEmpty, ResultEmpty},
internal::executor::EXECUTOR,
message::Listener,
prelude::RuntimeMessage,
};
/// The time, relative to the start of the game. Guaranteed to be monotonic.
pub fn game_time() -> Duration {
entity::get_component(entity::resources(), app::components::game_time()).unwrap()
}
/// The time, relative to Jan 1, 1970. Not guaranteed to be monotonic. Use [game_time] for most applications.
pub fn epoch_time() -> Duration {
entity::get_component(entity::resources(), app::components::epoch_time()).unwrap()
}
/// The length of the previous frame, in seconds.
pub fn delta_time() -> f32 {
entity::get_component(entity::resources(), app::components::delta_time()).unwrap()
}
/// Runs `callback` at most every `dt`. The actual time taken is passed to `callback`.
///
/// Note that this is bound by the length of the tick, so if your environment is running
/// slower than `dt`, this will not run at the expected rate.
pub fn fixed_rate_tick(dt: Duration, mut callback: impl FnMut(Duration) + 'static) -> Listener {
let mut last_tick = game_time();
Frame::subscribe(move |_| {
let delta = game_time() - last_tick;
if delta < dt {
return;
}
callback(delta);
last_tick = game_time();
})
}
/// A trait that abstracts over return types so that you can return an [ResultEmpty] or nothing.
pub trait CallbackReturn {
#[doc(hidden)]
fn into_result(self) -> ResultEmpty;
}
impl CallbackReturn for ResultEmpty {
fn into_result(self) -> ResultEmpty {
self
}
}
impl CallbackReturn for () {
fn into_result(self) -> ResultEmpty {
OkEmpty
}
}
/// Runs the given async block (`future`). This lets your module set up behaviour
/// to run concurrently, like a long-running task. It can return either a [ResultEmpty] or
/// nothing.
///
/// This is similar to [tokio::spawn](https://docs.rs/tokio/latest/tokio/fn.spawn.html),
/// as well as similar functions from other async runtimes.
///
/// # Examples
/// ```
/// run_async(async {
/// notification::broadcast("a title", "hello!");
/// sleep(2.0).await;
/// notification::broadcast("a title", "hello to you too!");
/// });
/// ```
pub fn run_async<R: CallbackReturn>(future: impl Future<Output = R> + 'static) {
EXECUTOR.spawn(Box::pin(async move { future.await.into_result() }));
}
/// Stops execution of this function until the provided `condition` is true.
/// Useful for waiting for something to happen in the game world.
///
/// This must be used with `.await` in either an `async fn` or an `async` block.
pub async fn block_until(condition: impl Fn() -> bool) {
std::future::poll_fn(move |_cx| {
if condition() {
Poll::Ready(())
} else {
Poll::Pending
}
})
.await
}
/// Stops execution of this function until `seconds` has passed.
///
/// This must be used with `.await` in either an `async fn` or an `async` block.
pub async fn sleep(seconds: f32) {
let target_time = Instant::now() + Duration::from_secs_f32(seconds);
block_until(|| Instant::now() > target_time).await
}
/// Stops execution of this function until the given [`RuntimeMessage`] is received.
/// The `is_relevant` function is used to filter out messages that are not relevant.
///
/// This must be used with `.await` in either an `async fn` or an `async` block.
pub async fn wait_for_runtime_message<T: RuntimeMessage + Clone + 'static>(
is_relevant: impl Fn(&T) -> bool + 'static,
) -> T {
let result = Rc::new(RefCell::new(None));
let mut listener = Some(T::subscribe({
let result = result.clone();
move |response| {
if !is_relevant(&response) {
return;
}
*result.borrow_mut() = Some(response);
}
}));
std::future::poll_fn(move |_cx| match &*result.borrow() {
Some(r) => {
let r = (*r).clone();
if let Some(listener) = listener.take() {
listener.stop();
}
Poll::Ready(r)
}
_ => Poll::Pending,
})
.await
}
/// Stops execution of this function until one of the given [`RuntimeMessage`]sare received.
/// The `is_relevant` functions are used to filter out messages that are not relevant.
///
/// This must be used with `.await` in either an `async fn` or an `async` block.
// TODO: Can we do this with a race of `wait_for_runtime_message`? We would want the resulting
// future to cancel their subscriptions, which is why I haven't done it yet.
pub async fn wait_for_fallible_runtime_messages<
Success: RuntimeMessage + Clone + 'static,
Failure: RuntimeMessage + Clone + 'static,
>(
is_relevant_success: impl Fn(&Success) -> bool + 'static,
is_relevant_failure: impl Fn(&Failure) -> bool + 'static,
) -> Result<Success, Failure> {
let result = Rc::new(RefCell::new(None));
let mut success_listener = Some(Success::subscribe({
let result = result.clone();
move |response| {
if !is_relevant_success(&response) {
return;
}
*result.borrow_mut() = Some(Ok(response));
}
}));
let mut failure_listener = Some(Failure::subscribe({
let result = result.clone();
move |response| {
if !is_relevant_failure(&response) {
return;
}
*result.borrow_mut() = Some(Err(response));
}
}));
std::future::poll_fn(move |_cx| match &*result.borrow() {
Some(r) => {
let r = (*r).clone();
if let Some(listener) = success_listener.take() {
listener.stop();
}
if let Some(listener) = failure_listener.take() {
listener.stop();
}
Poll::Ready(r)
}
_ => Poll::Pending,
})
.await
}