1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
//! Element is a React-inspired virtual tree library for the Ambient runtime.
//!
//! It is backed by the Ambient ECS; the virtual tree is converted into a real tree of entities and components.
//! When the tree is updated, it is compared to the previous tree, and only the differences are applied to the ECS.
//! This can be used for UI, as well as any other tree-like data structure that you want to be able to update efficiently.
//!
//! # Idioms
//!
//! By convention, most [ElementComponent]s define an `el` method that returns an [Element] of that type. This `el`
//! takes the properties to make it easy to both construct the component and instantiate it as an [Element].
//!
//! In addition to this, [ElementComponentExt] adds an `el` method to all [ElementComponent]s that converts them to
//! an [Element].
//!
//! This means that an [ElementComponent] that looks like this
//! ```ignore
//! #[element_component]
//! fn MyComponent(hooks: &mut Hooks, a: u32, b: String) -> Element {
//! // ...
//! }
//! ```
//!
//! can be instantiated as an [Element] using either of these methods:
//! ```ignore
//! MyComponent { a: 42, b: "hello".to_string() }.el()
//! ```
//! or
//! ```ignore
//! MyComponent::el(42, "hello".to_string())
//! ```
//!
//! # Passing data in
//!
//! To pass data into the root of an Element tree, pass the data into its properties when constructing it and/or update the root
//! of the tree using [ElementTree::migrate_root].
//!
//! To receive data from an Element tree, we recommend you use messaging. This includes sending messages to the server and/or
//! standard messaging channels in Rust (e.g. `std::sync::mpsc::channel`). We do not generally recommend trying to send data
//! out of the tree directly, as this can be difficult to reason about.
#![deny(missing_docs)]
#[macro_use]
extern crate derivative;
use std::{any::Any, sync::Arc};
#[cfg(feature = "native")]
use ambient_guest_bridge::ecs::{components, SystemGroup};
use ambient_guest_bridge::ecs::{
Component, ComponentDesc, ComponentValue, Entity, EntityId, World,
};
use as_any::AsAny;
use dyn_clonable::clonable;
#[cfg(feature = "native")]
use parking_lot::Mutex;
mod element_config;
mod hooks;
mod standard;
mod tree;
pub use ambient_element_component::element_component;
use element_config::*;
pub use hooks::*;
pub use standard::*;
pub use tree::*;
#[cfg(feature = "native")]
components!("app", {
/// The element tree state for an entity.
element_tree: ShareableElementTree,
});
pub use ambient_guest_bridge::core::app::components::{element, element_unmanaged_children};
#[clonable]
/// A trait for types that can be converted to `Any` and can also be cloned.
pub trait AnyCloneable: AsAny + Clone + std::fmt::Debug {}
impl<T: Clone + std::fmt::Debug + Any + 'static> AnyCloneable for T {}
type InstanceId = String;
#[clonable]
/// The base trait for all element components. These are similar to React components.
///
/// The `render` method is called to create the virtual tree for this component.
/// It will only be called when the component is first created, or when one of its dependencies changes.
/// These dependencies can include properties or state introduced by [Hooks].
pub trait ElementComponent: std::fmt::Debug + ElementComponentName + Clone + Sync + Send {
/// Render the virtual tree for this component.
fn render(self: Box<Self>, hooks: &mut Hooks) -> Element;
}
/// Contains the name of the type implementing [ElementComponent].
pub trait ElementComponentName {
/// Returns the name of the type implementing [ElementComponent].
fn element_component_name(&self) -> &'static str;
}
impl<T> ElementComponentName for T {
fn element_component_name(&self) -> &'static str {
std::any::type_name::<T>()
}
}
impl<T: ElementComponent + 'static> From<T> for Element {
fn from(part: T) -> Self {
Element::from_element_component(Box::new(part))
}
}
/// A convenience trait for converting an [ElementComponent] into an [Element].
///
/// For more information on this, see the [top-level documentation](crate).
pub trait ElementComponentExt {
/// Converts an [ElementComponent] into an [Element].
fn el(self) -> Element;
}
impl<T: ElementComponent + 'static> ElementComponentExt for T {
fn el(self) -> Element {
Element::from(self)
}
}
#[derive(Clone, Debug)]
/// A rendered [ElementComponent] instance.
pub struct Element {
config: ElementConfig,
children: Vec<Element>,
}
impl Element {
/// Creates a new [Element] with no children.
pub fn new() -> Self {
Self {
config: ElementConfig::new(),
children: Vec::new(),
}
}
/// Creates a new [Element] from the given component.
pub fn from_element_component(part: Box<dyn ElementComponent>) -> Self {
let mut s = Self::new();
s.config.part = Some(part);
s
}
/// Convenience method to construct a `Vec<Element>` from a single [Element].
pub fn vec_of(self) -> Vec<Self> {
vec![self]
}
/// Adds the given `component` with `value` to the element.
pub fn with<T: ComponentValue + Sync + Send + Clone + 'static>(
mut self,
component: Component<T>,
value: T,
) -> Self {
self.config.components.set(component, value);
self
}
/// Sets the given `component` to `value` on the element during initialization only.
pub fn init<T: ComponentValue + Sync + Send + Clone + 'static>(
mut self,
component: Component<T>,
value: T,
) -> Self {
self.config.init_components.set(component, value);
self
}
/// Calls [Self::init] with the default value for the component's type.
pub fn init_default<T: ComponentValue + Sync + Send + Clone + Default + 'static>(
self,
component: Component<T>,
) -> Self {
self.init(component, T::default())
}
#[cfg(feature = "native")]
/// Extends the element with all of the values from the given [Entity].
pub fn extend(mut self, entity_data: Entity) -> Self {
for unit in entity_data.into_iter() {
self.config.components.set_writer(
unit.desc(),
Arc::new(move |_, ed| ed.set_entry(unit.clone())),
);
}
self
}
/// See [`Element::init`]; adds each entry in the Entity to init
#[cfg(feature = "native")]
pub fn init_extend(mut self, entity_data: Entity) -> Self {
for unit in entity_data.into_iter() {
self.config.init_components.set_writer(
unit.desc(),
Arc::new(move |_, ed| ed.set_entry(unit.clone())),
);
}
self
}
/// Removes the given `component` from the element.
///
/// Warning: this only removes components on the current element.
// TODO: Make this remove components on the super element too.
pub fn remove<T: ComponentValue + Clone>(mut self, component: Component<T>) -> Self {
self.config.components.remove(component);
self.config.init_components.remove(component);
self
}
/// Sets the children of the element.
pub fn children(mut self, children: Vec<Element>) -> Self {
self.children = children;
self
}
/// Set the function used to spawn the element.
pub fn spawner<F: Fn(&mut World, Entity) -> EntityId + Sync + Send + 'static>(
mut self,
handler: F,
) -> Self {
self.config.spawner = Arc::new(handler);
self
}
/// Set the function used to despawn the element.
pub fn despawner<F: Fn(&mut World, EntityId) + Sync + Send + 'static>(
mut self,
handler: F,
) -> Self {
self.config.despawner = Arc::new(handler);
self
}
/// Set the callback to call when the element is spawned. The third argument is the instance ID.
pub fn on_spawned<F: Fn(&mut World, EntityId, &str) + Sync + Send + 'static>(
mut self,
handler: F,
) -> Self {
self.config.on_spawned = Some(Arc::new(handler));
self
}
/// Set the callback to call when the element is despawned. The third argument is the instance ID.
pub fn on_despawn<F: Fn(&mut World, EntityId, &str) + Sync + Send + 'static>(
mut self,
handler: F,
) -> Self {
self.config.on_despawn = Some(Arc::new(handler));
self
}
/// Set the unique key used to identify this element.
///
/// This is used to disambiguate elements with the same type. This should be used when rendering lists of elements.
pub fn key<T: Into<String>>(mut self, key: T) -> Self {
self.config.key = key.into();
self
}
/// Avoid rendering the subtree, except when the memo_key is changed.
pub fn memoize_subtree(mut self, memo_key: impl Into<String>) -> Self {
self.config.memo_key = Some(memo_key.into());
self
}
/// Returns true if the element has the given `component`.
pub fn has_component(&self, component: impl Into<ComponentDesc>) -> bool {
let index = component.into().index() as usize;
self.config.components.0.contains_key(&index)
|| self.config.init_components.0.contains_key(&index)
}
/// This spawns the element tree as a number of entities, but they won't react to changes. Returns the root entity
#[cfg(feature = "native")]
pub fn spawn_static(self, world: &mut World) -> EntityId {
ElementTree::new(world, self).root_entity().unwrap()
}
/// This spawns the element tree plus a handle entity which will have an `element_tree` component on it. All
/// `element_tree` components get updated each frame so this entity tree will be updated
#[cfg(feature = "native")]
pub fn spawn_interactive(self, world: &mut World) -> EntityId {
let tree = self.spawn_tree(world);
let entity = Entity::new().with(
self::element_tree(),
ShareableElementTree(Arc::new(Mutex::new(tree))),
);
world.spawn(entity)
}
/// This spawns the elemet tree and returns it. The tree won't be automatically updated, but can manually be updated
/// by calling the `update` method.
#[cfg(feature = "native")]
pub fn spawn_tree(self, world: &mut World) -> ElementTree {
ElementTree::new(world, self)
}
/// This spawns the elemet tree and returns it. The tree won't be automatically updated, but can manually be updated
/// by calling the `update` method.
#[cfg(feature = "guest")]
pub fn spawn_tree(self) -> ElementTree {
ElementTree::new(&mut World, self)
}
/// This spawns the element tree and sets up listeners to automatically update it.
///
/// This is equivalent to calling [Self::spawn_tree] and then calling [ElementTree::update] on the tree each frame.
///
/// You may want to update the tree manually if you want to replace the root [Element]:
/// ```ignore
/// let mut tree = Element::new().spawn_tree();
/// Frame::subscribe(move |_| {
/// if some_condition {
/// tree.migrate_root(&mut World, App::el(new_properties));
/// }
/// tree.update(&mut World);
/// });
/// ```
#[cfg(feature = "guest")]
pub fn spawn_interactive(self) {
use ambient_guest_bridge::api::{
core::messages::Frame, message::RuntimeMessage, prelude::OkEmpty,
};
let mut tree = self.spawn_tree();
Frame::subscribe(move |_| {
tree.update(&mut World);
OkEmpty
});
}
}
impl Default for Element {
fn default() -> Self {
Self::new()
}
}
#[cfg(feature = "native")]
/// The systems required to drive [ElementTree]s.
pub fn ambient_system() -> SystemGroup {
ElementTree::systems_for_component(element_tree())
}
#[macro_export]
/// Helper macro to define a `el` function for a newtype of a vector of [Element]s.
#[doc(hidden)]
macro_rules! define_el_function_for_vec_element_newtype {
($type:ty) => {
impl $type {
/// Creates an [Element] of this type from a vector of [Element]s
pub fn el(contents: impl std::iter::IntoIterator<Item = Element>) -> Element {
Self(contents.into_iter().collect()).el()
}
}
};
}
#[cfg(feature = "native")]
/// Render the given tree underneath `id`.
pub fn render_parented_with_component(
world: &mut World,
id: EntityId,
handle: Component<ShareableElementTree>,
mut element: Element,
) {
use ambient_core::{
hierarchy::{children, parent},
transform::{local_to_parent, local_to_world},
};
element = element.with(parent(), id);
if !element.has_component(local_to_parent()) {
element = element.init_default(local_to_parent());
}
if !element.has_component(local_to_world()) {
element = element.init_default(local_to_world());
}
if let Ok(tree) = world.get_cloned(id, handle) {
let mut tree = tree.0.lock();
let prev_root = tree.root_entity();
tree.migrate_root(world, element);
let next_root = tree.root_entity();
if next_root != prev_root {
let children = world.get_mut(id, children()).unwrap();
if let Some(prev_root) = prev_root {
children.retain(|x| *x != prev_root);
}
if let Some(next_root) = next_root {
children.push(next_root);
}
}
} else {
let tree = ShareableElementTree::new(world, element);
world.add_component(id, handle, tree.clone()).unwrap();
let root = tree.0.lock().root_entity();
if let Some(root) = root {
if let Ok(children) = world.get_mut(id, children()) {
children.push(root);
} else {
world.add_component(id, children(), vec![root]).unwrap();
}
}
world
.add_component_if_required(id, local_to_world(), Default::default())
.unwrap();
}
}
#[macro_export]
/// Shorthand for `let x = x.to_owned();`
macro_rules! to_owned {
($($es:ident),+) => {$(
#[allow(unused_mut)]
let mut $es = $es.to_owned();
)*}
}