1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
Conversion from quaternions to Euler rotation sequences.
From: http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
*/
use crate::{DQuat, Quat};
/// Euler rotation sequences.
///
/// The angles are applied starting from the right.
/// E.g. XYZ will first apply the z-axis rotation.
///
/// YXZ can be used for yaw (y-axis), pitch (x-axis), roll (z-axis).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum EulerRot {
/// Intrinsic three-axis rotation ZYX
ZYX,
/// Intrinsic three-axis rotation ZXY
ZXY,
/// Intrinsic three-axis rotation YXZ
YXZ,
/// Intrinsic three-axis rotation YZX
YZX,
/// Intrinsic three-axis rotation XYZ
XYZ,
/// Intrinsic three-axis rotation XZY
XZY,
}
impl Default for EulerRot {
/// Default `YXZ` as yaw (y-axis), pitch (x-axis), roll (z-axis).
fn default() -> Self {
Self::YXZ
}
}
/// Conversion from quaternion to euler angles.
pub(crate) trait EulerFromQuaternion<Q: Copy>: Sized + Copy {
type Output;
/// Compute the angle of the first axis (X-x-x)
fn first(self, q: Q) -> Self::Output;
/// Compute then angle of the second axis (x-X-x)
fn second(self, q: Q) -> Self::Output;
/// Compute then angle of the third axis (x-x-X)
fn third(self, q: Q) -> Self::Output;
/// Compute all angles of a rotation in the notation order
fn convert_quat(self, q: Q) -> (Self::Output, Self::Output, Self::Output) {
(self.first(q), self.second(q), self.third(q))
}
}
/// Conversion from euler angles to quaternion.
pub(crate) trait EulerToQuaternion<T>: Copy {
type Output;
/// Create the rotation quaternion for the three angles of this euler rotation sequence.
fn new_quat(self, u: T, v: T, w: T) -> Self::Output;
}
macro_rules! impl_from_quat {
($t:ident, $quat:ident) => {
impl EulerFromQuaternion<$quat> for EulerRot {
type Output = $t;
fn first(self, q: $quat) -> $t {
use crate::$t::math;
use EulerRot::*;
match self {
ZYX => math::atan2(
2.0 * (q.x * q.y + q.w * q.z),
q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
),
ZXY => math::atan2(
-2.0 * (q.x * q.y - q.w * q.z),
q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
),
YXZ => math::atan2(
2.0 * (q.x * q.z + q.w * q.y),
q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
),
YZX => math::atan2(
-2.0 * (q.x * q.z - q.w * q.y),
q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
),
XYZ => math::atan2(
-2.0 * (q.y * q.z - q.w * q.x),
q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
),
XZY => math::atan2(
2.0 * (q.y * q.z + q.w * q.x),
q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
),
}
}
fn second(self, q: $quat) -> $t {
use crate::$t::math;
use EulerRot::*;
match self {
ZYX => math::asin_clamped(-2.0 * (q.x * q.z - q.w * q.y)),
ZXY => math::asin_clamped(2.0 * (q.y * q.z + q.w * q.x)),
YXZ => math::asin_clamped(-2.0 * (q.y * q.z - q.w * q.x)),
YZX => math::asin_clamped(2.0 * (q.x * q.y + q.w * q.z)),
XYZ => math::asin_clamped(2.0 * (q.x * q.z + q.w * q.y)),
XZY => math::asin_clamped(-2.0 * (q.x * q.y - q.w * q.z)),
}
}
fn third(self, q: $quat) -> $t {
use crate::$t::math;
use EulerRot::*;
match self {
ZYX => math::atan2(
2.0 * (q.y * q.z + q.w * q.x),
q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
),
ZXY => math::atan2(
-2.0 * (q.x * q.z - q.w * q.y),
q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
),
YXZ => math::atan2(
2.0 * (q.x * q.y + q.w * q.z),
q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
),
YZX => math::atan2(
-2.0 * (q.y * q.z - q.w * q.x),
q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
),
XYZ => math::atan2(
-2.0 * (q.x * q.y - q.w * q.z),
q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
),
XZY => math::atan2(
2.0 * (q.x * q.z + q.w * q.y),
q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
),
}
}
}
// End - impl EulerFromQuaternion
};
}
macro_rules! impl_to_quat {
($t:ty, $quat:ident) => {
impl EulerToQuaternion<$t> for EulerRot {
type Output = $quat;
#[inline(always)]
fn new_quat(self, u: $t, v: $t, w: $t) -> $quat {
use EulerRot::*;
#[inline(always)]
fn rot_x(a: $t) -> $quat {
$quat::from_rotation_x(a)
}
#[inline(always)]
fn rot_y(a: $t) -> $quat {
$quat::from_rotation_y(a)
}
#[inline(always)]
fn rot_z(a: $t) -> $quat {
$quat::from_rotation_z(a)
}
match self {
ZYX => rot_z(u) * rot_y(v) * rot_x(w),
ZXY => rot_z(u) * rot_x(v) * rot_y(w),
YXZ => rot_y(u) * rot_x(v) * rot_z(w),
YZX => rot_y(u) * rot_z(v) * rot_x(w),
XYZ => rot_x(u) * rot_y(v) * rot_z(w),
XZY => rot_x(u) * rot_z(v) * rot_y(w),
}
.normalize()
}
}
// End - impl EulerToQuaternion
};
}
impl_from_quat!(f32, Quat);
impl_from_quat!(f64, DQuat);
impl_to_quat!(f32, Quat);
impl_to_quat!(f64, DQuat);