1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*
Conversion from quaternions to Euler rotation sequences.

From: http://bediyap.com/programming/convert-quaternion-to-euler-rotations/
*/

use crate::{DQuat, Quat};

/// Euler rotation sequences.
///
/// The angles are applied starting from the right.
/// E.g. XYZ will first apply the z-axis rotation.
///
/// YXZ can be used for yaw (y-axis), pitch (x-axis), roll (z-axis).
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum EulerRot {
    /// Intrinsic three-axis rotation ZYX
    ZYX,
    /// Intrinsic three-axis rotation ZXY
    ZXY,
    /// Intrinsic three-axis rotation YXZ
    YXZ,
    /// Intrinsic three-axis rotation YZX
    YZX,
    /// Intrinsic three-axis rotation XYZ
    XYZ,
    /// Intrinsic three-axis rotation XZY
    XZY,
}

impl Default for EulerRot {
    /// Default `YXZ` as yaw (y-axis), pitch (x-axis), roll (z-axis).
    fn default() -> Self {
        Self::YXZ
    }
}

/// Conversion from quaternion to euler angles.
pub(crate) trait EulerFromQuaternion<Q: Copy>: Sized + Copy {
    type Output;
    /// Compute the angle of the first axis (X-x-x)
    fn first(self, q: Q) -> Self::Output;
    /// Compute then angle of the second axis (x-X-x)
    fn second(self, q: Q) -> Self::Output;
    /// Compute then angle of the third axis (x-x-X)
    fn third(self, q: Q) -> Self::Output;

    /// Compute all angles of a rotation in the notation order
    fn convert_quat(self, q: Q) -> (Self::Output, Self::Output, Self::Output) {
        (self.first(q), self.second(q), self.third(q))
    }
}

/// Conversion from euler angles to quaternion.
pub(crate) trait EulerToQuaternion<T>: Copy {
    type Output;
    /// Create the rotation quaternion for the three angles of this euler rotation sequence.
    fn new_quat(self, u: T, v: T, w: T) -> Self::Output;
}

macro_rules! impl_from_quat {
    ($t:ident, $quat:ident) => {
        impl EulerFromQuaternion<$quat> for EulerRot {
            type Output = $t;
            fn first(self, q: $quat) -> $t {
                use crate::$t::math;
                use EulerRot::*;
                match self {
                    ZYX => math::atan2(
                        2.0 * (q.x * q.y + q.w * q.z),
                        q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
                    ),
                    ZXY => math::atan2(
                        -2.0 * (q.x * q.y - q.w * q.z),
                        q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
                    ),
                    YXZ => math::atan2(
                        2.0 * (q.x * q.z + q.w * q.y),
                        q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
                    ),
                    YZX => math::atan2(
                        -2.0 * (q.x * q.z - q.w * q.y),
                        q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
                    ),
                    XYZ => math::atan2(
                        -2.0 * (q.y * q.z - q.w * q.x),
                        q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
                    ),
                    XZY => math::atan2(
                        2.0 * (q.y * q.z + q.w * q.x),
                        q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
                    ),
                }
            }

            fn second(self, q: $quat) -> $t {
                use crate::$t::math;
                use EulerRot::*;
                match self {
                    ZYX => math::asin_clamped(-2.0 * (q.x * q.z - q.w * q.y)),
                    ZXY => math::asin_clamped(2.0 * (q.y * q.z + q.w * q.x)),
                    YXZ => math::asin_clamped(-2.0 * (q.y * q.z - q.w * q.x)),
                    YZX => math::asin_clamped(2.0 * (q.x * q.y + q.w * q.z)),
                    XYZ => math::asin_clamped(2.0 * (q.x * q.z + q.w * q.y)),
                    XZY => math::asin_clamped(-2.0 * (q.x * q.y - q.w * q.z)),
                }
            }

            fn third(self, q: $quat) -> $t {
                use crate::$t::math;
                use EulerRot::*;
                match self {
                    ZYX => math::atan2(
                        2.0 * (q.y * q.z + q.w * q.x),
                        q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
                    ),
                    ZXY => math::atan2(
                        -2.0 * (q.x * q.z - q.w * q.y),
                        q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z,
                    ),
                    YXZ => math::atan2(
                        2.0 * (q.x * q.y + q.w * q.z),
                        q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
                    ),
                    YZX => math::atan2(
                        -2.0 * (q.y * q.z - q.w * q.x),
                        q.w * q.w - q.x * q.x + q.y * q.y - q.z * q.z,
                    ),
                    XYZ => math::atan2(
                        -2.0 * (q.x * q.y - q.w * q.z),
                        q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
                    ),
                    XZY => math::atan2(
                        2.0 * (q.x * q.z + q.w * q.y),
                        q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z,
                    ),
                }
            }
        }
        // End - impl EulerFromQuaternion
    };
}

macro_rules! impl_to_quat {
    ($t:ty, $quat:ident) => {
        impl EulerToQuaternion<$t> for EulerRot {
            type Output = $quat;
            #[inline(always)]
            fn new_quat(self, u: $t, v: $t, w: $t) -> $quat {
                use EulerRot::*;
                #[inline(always)]
                fn rot_x(a: $t) -> $quat {
                    $quat::from_rotation_x(a)
                }
                #[inline(always)]
                fn rot_y(a: $t) -> $quat {
                    $quat::from_rotation_y(a)
                }
                #[inline(always)]
                fn rot_z(a: $t) -> $quat {
                    $quat::from_rotation_z(a)
                }
                match self {
                    ZYX => rot_z(u) * rot_y(v) * rot_x(w),
                    ZXY => rot_z(u) * rot_x(v) * rot_y(w),
                    YXZ => rot_y(u) * rot_x(v) * rot_z(w),
                    YZX => rot_y(u) * rot_z(v) * rot_x(w),
                    XYZ => rot_x(u) * rot_y(v) * rot_z(w),
                    XZY => rot_x(u) * rot_z(v) * rot_y(w),
                }
                .normalize()
            }
        }
        // End - impl EulerToQuaternion
    };
}

impl_from_quat!(f32, Quat);
impl_from_quat!(f64, DQuat);
impl_to_quat!(f32, Quat);
impl_to_quat!(f64, DQuat);