1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
// Generated from affine.rs.tera template. Edit the template, not the generated file.
use crate::{DMat2, DMat3, DVec2};
use core::ops::{Deref, DerefMut, Mul};
/// A 2D affine transform, which can represent translation, rotation, scaling and shear.
#[derive(Copy, Clone)]
#[repr(C)]
pub struct DAffine2 {
pub matrix2: DMat2,
pub translation: DVec2,
}
impl DAffine2 {
/// The degenerate zero transform.
///
/// This transforms any finite vector and point to zero.
/// The zero transform is non-invertible.
pub const ZERO: Self = Self {
matrix2: DMat2::ZERO,
translation: DVec2::ZERO,
};
/// The identity transform.
///
/// Multiplying a vector with this returns the same vector.
pub const IDENTITY: Self = Self {
matrix2: DMat2::IDENTITY,
translation: DVec2::ZERO,
};
/// All NAN:s.
pub const NAN: Self = Self {
matrix2: DMat2::NAN,
translation: DVec2::NAN,
};
/// Creates an affine transform from three column vectors.
#[inline(always)]
pub const fn from_cols(x_axis: DVec2, y_axis: DVec2, z_axis: DVec2) -> Self {
Self {
matrix2: DMat2::from_cols(x_axis, y_axis),
translation: z_axis,
}
}
/// Creates an affine transform from a `[f64; 6]` array stored in column major order.
#[inline]
pub fn from_cols_array(m: &[f64; 6]) -> Self {
Self {
matrix2: DMat2::from_cols_slice(&m[0..4]),
translation: DVec2::from_slice(&m[4..6]),
}
}
/// Creates a `[f64; 6]` array storing data in column major order.
#[inline]
pub fn to_cols_array(&self) -> [f64; 6] {
let x = &self.matrix2.x_axis;
let y = &self.matrix2.y_axis;
let z = &self.translation;
[x.x, x.y, y.x, y.y, z.x, z.y]
}
/// Creates an affine transform from a `[[f64; 2]; 3]`
/// 2D array stored in column major order.
/// If your data is in row major order you will need to `transpose` the returned
/// matrix.
#[inline]
pub fn from_cols_array_2d(m: &[[f64; 2]; 3]) -> Self {
Self {
matrix2: DMat2::from_cols(m[0].into(), m[1].into()),
translation: m[2].into(),
}
}
/// Creates a `[[f64; 2]; 3]` 2D array storing data in
/// column major order.
/// If you require data in row major order `transpose` the matrix first.
#[inline]
pub fn to_cols_array_2d(&self) -> [[f64; 2]; 3] {
[
self.matrix2.x_axis.into(),
self.matrix2.y_axis.into(),
self.translation.into(),
]
}
/// Creates an affine transform from the first 6 values in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 6 elements long.
#[inline]
pub fn from_cols_slice(slice: &[f64]) -> Self {
Self {
matrix2: DMat2::from_cols_slice(&slice[0..4]),
translation: DVec2::from_slice(&slice[4..6]),
}
}
/// Writes the columns of `self` to the first 6 elements in `slice`.
///
/// # Panics
///
/// Panics if `slice` is less than 6 elements long.
#[inline]
pub fn write_cols_to_slice(self, slice: &mut [f64]) {
self.matrix2.write_cols_to_slice(&mut slice[0..4]);
self.translation.write_to_slice(&mut slice[4..6]);
}
/// Creates an affine transform that changes scale.
/// Note that if any scale is zero the transform will be non-invertible.
#[inline]
pub fn from_scale(scale: DVec2) -> Self {
Self {
matrix2: DMat2::from_diagonal(scale),
translation: DVec2::ZERO,
}
}
/// Creates an affine transform from the given rotation `angle`.
#[inline]
pub fn from_angle(angle: f64) -> Self {
Self {
matrix2: DMat2::from_angle(angle),
translation: DVec2::ZERO,
}
}
/// Creates an affine transformation from the given 2D `translation`.
#[inline]
pub fn from_translation(translation: DVec2) -> Self {
Self {
matrix2: DMat2::IDENTITY,
translation,
}
}
/// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation)
#[inline]
pub fn from_mat2(matrix2: DMat2) -> Self {
Self {
matrix2,
translation: DVec2::ZERO,
}
}
/// Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a
/// translation vector.
///
/// Equivalent to
/// `DAffine2::from_translation(translation) * DAffine2::from_mat2(mat2)`
#[inline]
pub fn from_mat2_translation(matrix2: DMat2, translation: DVec2) -> Self {
Self {
matrix2,
translation,
}
}
/// Creates an affine transform from the given 2D `scale`, rotation `angle` (in radians) and
/// `translation`.
///
/// Equivalent to `DAffine2::from_translation(translation) *
/// DAffine2::from_angle(angle) * DAffine2::from_scale(scale)`
#[inline]
pub fn from_scale_angle_translation(scale: DVec2, angle: f64, translation: DVec2) -> Self {
let rotation = DMat2::from_angle(angle);
Self {
matrix2: DMat2::from_cols(rotation.x_axis * scale.x, rotation.y_axis * scale.y),
translation,
}
}
/// Creates an affine transform from the given 2D rotation `angle` (in radians) and
/// `translation`.
///
/// Equivalent to `DAffine2::from_translation(translation) * DAffine2::from_angle(angle)`
#[inline]
pub fn from_angle_translation(angle: f64, translation: DVec2) -> Self {
Self {
matrix2: DMat2::from_angle(angle),
translation,
}
}
/// The given `DMat3` must be an affine transform,
#[inline]
pub fn from_mat3(m: DMat3) -> Self {
use crate::swizzles::Vec3Swizzles;
Self {
matrix2: DMat2::from_cols(m.x_axis.xy(), m.y_axis.xy()),
translation: m.z_axis.xy(),
}
}
/// Transforms the given 2D point, applying shear, scale, rotation and translation.
#[inline]
pub fn transform_point2(&self, rhs: DVec2) -> DVec2 {
self.matrix2 * rhs + self.translation
}
/// Transforms the given 2D vector, applying shear, scale and rotation (but NOT
/// translation).
///
/// To also apply translation, use [`Self::transform_point2()`] instead.
#[inline]
pub fn transform_vector2(&self, rhs: DVec2) -> DVec2 {
self.matrix2 * rhs
}
/// Returns `true` if, and only if, all elements are finite.
///
/// If any element is either `NaN`, positive or negative infinity, this will return
/// `false`.
#[inline]
pub fn is_finite(&self) -> bool {
self.matrix2.is_finite() && self.translation.is_finite()
}
/// Returns `true` if any elements are `NaN`.
#[inline]
pub fn is_nan(&self) -> bool {
self.matrix2.is_nan() || self.translation.is_nan()
}
/// Returns true if the absolute difference of all elements between `self` and `rhs`
/// is less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two 3x4 matrices contain similar elements. It works
/// best when comparing with a known value. The `max_abs_diff` that should be used used
/// depends on the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
pub fn abs_diff_eq(&self, rhs: Self, max_abs_diff: f64) -> bool {
self.matrix2.abs_diff_eq(rhs.matrix2, max_abs_diff)
&& self.translation.abs_diff_eq(rhs.translation, max_abs_diff)
}
/// Return the inverse of this transform.
///
/// Note that if the transform is not invertible the result will be invalid.
#[must_use]
#[inline]
pub fn inverse(&self) -> Self {
let matrix2 = self.matrix2.inverse();
// transform negative translation by the matrix inverse:
let translation = -(matrix2 * self.translation);
Self {
matrix2,
translation,
}
}
}
impl Default for DAffine2 {
#[inline(always)]
fn default() -> Self {
Self::IDENTITY
}
}
impl Deref for DAffine2 {
type Target = crate::deref::Cols3<DVec2>;
#[inline(always)]
fn deref(&self) -> &Self::Target {
unsafe { &*(self as *const Self as *const Self::Target) }
}
}
impl DerefMut for DAffine2 {
#[inline(always)]
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { &mut *(self as *mut Self as *mut Self::Target) }
}
}
impl PartialEq for DAffine2 {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
self.matrix2.eq(&rhs.matrix2) && self.translation.eq(&rhs.translation)
}
}
#[cfg(not(target_arch = "spirv"))]
impl core::fmt::Debug for DAffine2 {
fn fmt(&self, fmt: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
fmt.debug_struct(stringify!(DAffine2))
.field("matrix2", &self.matrix2)
.field("translation", &self.translation)
.finish()
}
}
#[cfg(not(target_arch = "spirv"))]
impl core::fmt::Display for DAffine2 {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
write!(
f,
"[{}, {}, {}]",
self.matrix2.x_axis, self.matrix2.y_axis, self.translation
)
}
}
impl<'a> core::iter::Product<&'a Self> for DAffine2 {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::IDENTITY, |a, &b| a * b)
}
}
impl Mul for DAffine2 {
type Output = DAffine2;
#[inline]
fn mul(self, rhs: DAffine2) -> Self::Output {
Self {
matrix2: self.matrix2 * rhs.matrix2,
translation: self.matrix2 * rhs.translation + self.translation,
}
}
}
impl From<DAffine2> for DMat3 {
#[inline]
fn from(m: DAffine2) -> DMat3 {
Self::from_cols(
m.matrix2.x_axis.extend(0.0),
m.matrix2.y_axis.extend(0.0),
m.translation.extend(1.0),
)
}
}
impl Mul<DMat3> for DAffine2 {
type Output = DMat3;
#[inline]
fn mul(self, rhs: DMat3) -> Self::Output {
DMat3::from(self) * rhs
}
}
impl Mul<DAffine2> for DMat3 {
type Output = DMat3;
#[inline]
fn mul(self, rhs: DAffine2) -> Self::Output {
self * DMat3::from(rhs)
}
}