1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
// Generated from quat.rs.tera template. Edit the template, not the generated file.
use crate::{
euler::{EulerFromQuaternion, EulerRot, EulerToQuaternion},
f64::math,
DMat3, DMat4, DVec2, DVec3, DVec4, Quat,
};
#[cfg(not(target_arch = "spirv"))]
use core::fmt;
use core::iter::{Product, Sum};
use core::ops::{Add, Div, Mul, MulAssign, Neg, Sub};
/// Creates a quaternion from `x`, `y`, `z` and `w` values.
///
/// This should generally not be called manually unless you know what you are doing. Use
/// one of the other constructors instead such as `identity` or `from_axis_angle`.
#[inline]
pub const fn dquat(x: f64, y: f64, z: f64, w: f64) -> DQuat {
DQuat::from_xyzw(x, y, z, w)
}
/// A quaternion representing an orientation.
///
/// This quaternion is intended to be of unit length but may denormalize due to
/// floating point "error creep" which can occur when successive quaternion
/// operations are applied.
#[derive(Clone, Copy)]
#[cfg_attr(not(target_arch = "spirv"), repr(C))]
#[cfg_attr(target_arch = "spirv", repr(simd))]
pub struct DQuat {
pub x: f64,
pub y: f64,
pub z: f64,
pub w: f64,
}
impl DQuat {
/// All zeros.
const ZERO: Self = Self::from_array([0.0; 4]);
/// The identity quaternion. Corresponds to no rotation.
pub const IDENTITY: Self = Self::from_xyzw(0.0, 0.0, 0.0, 1.0);
/// All NANs.
pub const NAN: Self = Self::from_array([f64::NAN; 4]);
/// Creates a new rotation quaternion.
///
/// This should generally not be called manually unless you know what you are doing.
/// Use one of the other constructors instead such as `identity` or `from_axis_angle`.
///
/// `from_xyzw` is mostly used by unit tests and `serde` deserialization.
///
/// # Preconditions
///
/// This function does not check if the input is normalized, it is up to the user to
/// provide normalized input or to normalized the resulting quaternion.
#[inline(always)]
pub const fn from_xyzw(x: f64, y: f64, z: f64, w: f64) -> Self {
Self { x, y, z, w }
}
/// Creates a rotation quaternion from an array.
///
/// # Preconditions
///
/// This function does not check if the input is normalized, it is up to the user to
/// provide normalized input or to normalized the resulting quaternion.
#[inline]
pub const fn from_array(a: [f64; 4]) -> Self {
Self::from_xyzw(a[0], a[1], a[2], a[3])
}
/// Creates a new rotation quaternion from a 4D vector.
///
/// # Preconditions
///
/// This function does not check if the input is normalized, it is up to the user to
/// provide normalized input or to normalized the resulting quaternion.
#[inline]
pub fn from_vec4(v: DVec4) -> Self {
Self {
x: v.x,
y: v.y,
z: v.z,
w: v.w,
}
}
/// Creates a rotation quaternion from a slice.
///
/// # Preconditions
///
/// This function does not check if the input is normalized, it is up to the user to
/// provide normalized input or to normalized the resulting quaternion.
///
/// # Panics
///
/// Panics if `slice` length is less than 4.
#[inline]
pub fn from_slice(slice: &[f64]) -> Self {
Self::from_xyzw(slice[0], slice[1], slice[2], slice[3])
}
/// Writes the quaternion to an unaligned slice.
///
/// # Panics
///
/// Panics if `slice` length is less than 4.
#[inline]
pub fn write_to_slice(self, slice: &mut [f64]) {
slice[0] = self.x;
slice[1] = self.y;
slice[2] = self.z;
slice[3] = self.w;
}
/// Create a quaternion for a normalized rotation `axis` and `angle` (in radians).
///
/// The axis must be a unit vector.
///
/// # Panics
///
/// Will panic if `axis` is not normalized when `glam_assert` is enabled.
#[inline]
pub fn from_axis_angle(axis: DVec3, angle: f64) -> Self {
glam_assert!(axis.is_normalized());
let (s, c) = math::sin_cos(angle * 0.5);
let v = axis * s;
Self::from_xyzw(v.x, v.y, v.z, c)
}
/// Create a quaternion that rotates `v.length()` radians around `v.normalize()`.
///
/// `from_scaled_axis(Vec3::ZERO)` results in the identity quaternion.
#[inline]
pub fn from_scaled_axis(v: DVec3) -> Self {
let length = v.length();
if length == 0.0 {
Self::IDENTITY
} else {
Self::from_axis_angle(v / length, length)
}
}
/// Creates a quaternion from the `angle` (in radians) around the x axis.
#[inline]
pub fn from_rotation_x(angle: f64) -> Self {
let (s, c) = math::sin_cos(angle * 0.5);
Self::from_xyzw(s, 0.0, 0.0, c)
}
/// Creates a quaternion from the `angle` (in radians) around the y axis.
#[inline]
pub fn from_rotation_y(angle: f64) -> Self {
let (s, c) = math::sin_cos(angle * 0.5);
Self::from_xyzw(0.0, s, 0.0, c)
}
/// Creates a quaternion from the `angle` (in radians) around the z axis.
#[inline]
pub fn from_rotation_z(angle: f64) -> Self {
let (s, c) = math::sin_cos(angle * 0.5);
Self::from_xyzw(0.0, 0.0, s, c)
}
#[inline]
/// Creates a quaternion from the given Euler rotation sequence and the angles (in radians).
pub fn from_euler(euler: EulerRot, a: f64, b: f64, c: f64) -> Self {
euler.new_quat(a, b, c)
}
/// From the columns of a 3x3 rotation matrix.
#[inline]
pub(crate) fn from_rotation_axes(x_axis: DVec3, y_axis: DVec3, z_axis: DVec3) -> Self {
// Based on https://github.com/microsoft/DirectXMath `XM$quaternionRotationMatrix`
let (m00, m01, m02) = x_axis.into();
let (m10, m11, m12) = y_axis.into();
let (m20, m21, m22) = z_axis.into();
if m22 <= 0.0 {
// x^2 + y^2 >= z^2 + w^2
let dif10 = m11 - m00;
let omm22 = 1.0 - m22;
if dif10 <= 0.0 {
// x^2 >= y^2
let four_xsq = omm22 - dif10;
let inv4x = 0.5 / math::sqrt(four_xsq);
Self::from_xyzw(
four_xsq * inv4x,
(m01 + m10) * inv4x,
(m02 + m20) * inv4x,
(m12 - m21) * inv4x,
)
} else {
// y^2 >= x^2
let four_ysq = omm22 + dif10;
let inv4y = 0.5 / math::sqrt(four_ysq);
Self::from_xyzw(
(m01 + m10) * inv4y,
four_ysq * inv4y,
(m12 + m21) * inv4y,
(m20 - m02) * inv4y,
)
}
} else {
// z^2 + w^2 >= x^2 + y^2
let sum10 = m11 + m00;
let opm22 = 1.0 + m22;
if sum10 <= 0.0 {
// z^2 >= w^2
let four_zsq = opm22 - sum10;
let inv4z = 0.5 / math::sqrt(four_zsq);
Self::from_xyzw(
(m02 + m20) * inv4z,
(m12 + m21) * inv4z,
four_zsq * inv4z,
(m01 - m10) * inv4z,
)
} else {
// w^2 >= z^2
let four_wsq = opm22 + sum10;
let inv4w = 0.5 / math::sqrt(four_wsq);
Self::from_xyzw(
(m12 - m21) * inv4w,
(m20 - m02) * inv4w,
(m01 - m10) * inv4w,
four_wsq * inv4w,
)
}
}
}
/// Creates a quaternion from a 3x3 rotation matrix.
#[inline]
pub fn from_mat3(mat: &DMat3) -> Self {
Self::from_rotation_axes(mat.x_axis, mat.y_axis, mat.z_axis)
}
/// Creates a quaternion from a 3x3 rotation matrix inside a homogeneous 4x4 matrix.
#[inline]
pub fn from_mat4(mat: &DMat4) -> Self {
Self::from_rotation_axes(
mat.x_axis.truncate(),
mat.y_axis.truncate(),
mat.z_axis.truncate(),
)
}
/// Gets the minimal rotation for transforming `from` to `to`. The rotation is in the
/// plane spanned by the two vectors. Will rotate at most 180 degrees.
///
/// The inputs must be unit vectors.
///
/// `from_rotation_arc(from, to) * from ≈ to`.
///
/// For near-singular cases (from≈to and from≈-to) the current implementation
/// is only accurate to about 0.001 (for `f32`).
///
/// # Panics
///
/// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
pub fn from_rotation_arc(from: DVec3, to: DVec3) -> Self {
glam_assert!(from.is_normalized());
glam_assert!(to.is_normalized());
const ONE_MINUS_EPS: f64 = 1.0 - 2.0 * core::f64::EPSILON;
let dot = from.dot(to);
if dot > ONE_MINUS_EPS {
// 0° singulary: from ≈ to
Self::IDENTITY
} else if dot < -ONE_MINUS_EPS {
// 180° singulary: from ≈ -to
use core::f64::consts::PI; // half a turn = 𝛕/2 = 180°
Self::from_axis_angle(from.any_orthonormal_vector(), PI)
} else {
let c = from.cross(to);
Self::from_xyzw(c.x, c.y, c.z, 1.0 + dot).normalize()
}
}
/// Gets the minimal rotation for transforming `from` to either `to` or `-to`. This means
/// that the resulting quaternion will rotate `from` so that it is colinear with `to`.
///
/// The rotation is in the plane spanned by the two vectors. Will rotate at most 90
/// degrees.
///
/// The inputs must be unit vectors.
///
/// `to.dot(from_rotation_arc_colinear(from, to) * from).abs() ≈ 1`.
///
/// # Panics
///
/// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
#[inline]
pub fn from_rotation_arc_colinear(from: DVec3, to: DVec3) -> Self {
if from.dot(to) < 0.0 {
Self::from_rotation_arc(from, -to)
} else {
Self::from_rotation_arc(from, to)
}
}
/// Gets the minimal rotation for transforming `from` to `to`. The resulting rotation is
/// around the z axis. Will rotate at most 180 degrees.
///
/// The inputs must be unit vectors.
///
/// `from_rotation_arc_2d(from, to) * from ≈ to`.
///
/// For near-singular cases (from≈to and from≈-to) the current implementation
/// is only accurate to about 0.001 (for `f32`).
///
/// # Panics
///
/// Will panic if `from` or `to` are not normalized when `glam_assert` is enabled.
pub fn from_rotation_arc_2d(from: DVec2, to: DVec2) -> Self {
glam_assert!(from.is_normalized());
glam_assert!(to.is_normalized());
const ONE_MINUS_EPSILON: f64 = 1.0 - 2.0 * core::f64::EPSILON;
let dot = from.dot(to);
if dot > ONE_MINUS_EPSILON {
// 0° singulary: from ≈ to
Self::IDENTITY
} else if dot < -ONE_MINUS_EPSILON {
// 180° singulary: from ≈ -to
const COS_FRAC_PI_2: f64 = 0.0;
const SIN_FRAC_PI_2: f64 = 1.0;
// rotation around z by PI radians
Self::from_xyzw(0.0, 0.0, SIN_FRAC_PI_2, COS_FRAC_PI_2)
} else {
// vector3 cross where z=0
let z = from.x * to.y - to.x * from.y;
let w = 1.0 + dot;
// calculate length with x=0 and y=0 to normalize
let len_rcp = 1.0 / math::sqrt(z * z + w * w);
Self::from_xyzw(0.0, 0.0, z * len_rcp, w * len_rcp)
}
}
/// Returns the rotation axis (normalized) and angle (in radians) of `self`.
#[inline]
pub fn to_axis_angle(self) -> (DVec3, f64) {
const EPSILON: f64 = 1.0e-8;
let v = DVec3::new(self.x, self.y, self.z);
let length = v.length();
if length >= EPSILON {
let angle = 2.0 * math::atan2(length, self.w);
let axis = v / length;
(axis, angle)
} else {
(DVec3::X, 0.0)
}
}
/// Returns the rotation axis scaled by the rotation in radians.
#[inline]
pub fn to_scaled_axis(self) -> DVec3 {
let (axis, angle) = self.to_axis_angle();
axis * angle
}
/// Returns the rotation angles for the given euler rotation sequence.
#[inline]
pub fn to_euler(self, euler: EulerRot) -> (f64, f64, f64) {
euler.convert_quat(self)
}
/// `[x, y, z, w]`
#[inline]
pub fn to_array(&self) -> [f64; 4] {
[self.x, self.y, self.z, self.w]
}
/// Returns the vector part of the quaternion.
#[inline]
pub fn xyz(self) -> DVec3 {
DVec3::new(self.x, self.y, self.z)
}
/// Returns the quaternion conjugate of `self`. For a unit quaternion the
/// conjugate is also the inverse.
#[must_use]
#[inline]
pub fn conjugate(self) -> Self {
Self {
x: -self.x,
y: -self.y,
z: -self.z,
w: self.w,
}
}
/// Returns the inverse of a normalized quaternion.
///
/// Typically quaternion inverse returns the conjugate of a normalized quaternion.
/// Because `self` is assumed to already be unit length this method *does not* normalize
/// before returning the conjugate.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn inverse(self) -> Self {
glam_assert!(self.is_normalized());
self.conjugate()
}
/// Computes the dot product of `self` and `rhs`. The dot product is
/// equal to the cosine of the angle between two quaternion rotations.
#[inline]
pub fn dot(self, rhs: Self) -> f64 {
DVec4::from(self).dot(DVec4::from(rhs))
}
/// Computes the length of `self`.
#[doc(alias = "magnitude")]
#[inline]
pub fn length(self) -> f64 {
DVec4::from(self).length()
}
/// Computes the squared length of `self`.
///
/// This is generally faster than `length()` as it avoids a square
/// root operation.
#[doc(alias = "magnitude2")]
#[inline]
pub fn length_squared(self) -> f64 {
DVec4::from(self).length_squared()
}
/// Computes `1.0 / length()`.
///
/// For valid results, `self` must _not_ be of length zero.
#[inline]
pub fn length_recip(self) -> f64 {
DVec4::from(self).length_recip()
}
/// Returns `self` normalized to length 1.0.
///
/// For valid results, `self` must _not_ be of length zero.
///
/// Panics
///
/// Will panic if `self` is zero length when `glam_assert` is enabled.
#[must_use]
#[inline]
pub fn normalize(self) -> Self {
Self::from_vec4(DVec4::from(self).normalize())
}
/// Returns `true` if, and only if, all elements are finite.
/// If any element is either `NaN`, positive or negative infinity, this will return `false`.
#[inline]
pub fn is_finite(self) -> bool {
DVec4::from(self).is_finite()
}
#[inline]
pub fn is_nan(self) -> bool {
DVec4::from(self).is_nan()
}
/// Returns whether `self` of length `1.0` or not.
///
/// Uses a precision threshold of `1e-6`.
#[inline]
pub fn is_normalized(self) -> bool {
DVec4::from(self).is_normalized()
}
#[inline]
pub fn is_near_identity(self) -> bool {
// Based on https://github.com/nfrechette/rtm `rtm::quat_near_identity`
let threshold_angle = 0.002_847_144_6;
// Because of floating point precision, we cannot represent very small rotations.
// The closest f32 to 1.0 that is not 1.0 itself yields:
// 0.99999994.acos() * 2.0 = 0.000690533954 rad
//
// An error threshold of 1.e-6 is used by default.
// (1.0 - 1.e-6).acos() * 2.0 = 0.00284714461 rad
// (1.0 - 1.e-7).acos() * 2.0 = 0.00097656250 rad
//
// We don't really care about the angle value itself, only if it's close to 0.
// This will happen whenever quat.w is close to 1.0.
// If the quat.w is close to -1.0, the angle will be near 2*PI which is close to
// a negative 0 rotation. By forcing quat.w to be positive, we'll end up with
// the shortest path.
let positive_w_angle = math::acos_approx(math::abs(self.w)) * 2.0;
positive_w_angle < threshold_angle
}
/// Returns the angle (in radians) for the minimal rotation
/// for transforming this quaternion into another.
///
/// Both quaternions must be normalized.
///
/// # Panics
///
/// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
#[inline]
pub fn angle_between(self, rhs: Self) -> f64 {
glam_assert!(self.is_normalized() && rhs.is_normalized());
math::acos_approx(math::abs(self.dot(rhs))) * 2.0
}
/// Returns true if the absolute difference of all elements between `self` and `rhs`
/// is less than or equal to `max_abs_diff`.
///
/// This can be used to compare if two quaternions contain similar elements. It works
/// best when comparing with a known value. The `max_abs_diff` that should be used used
/// depends on the values being compared against.
///
/// For more see
/// [comparing floating point numbers](https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/).
#[inline]
pub fn abs_diff_eq(self, rhs: Self, max_abs_diff: f64) -> bool {
DVec4::from(self).abs_diff_eq(DVec4::from(rhs), max_abs_diff)
}
/// Performs a linear interpolation between `self` and `rhs` based on
/// the value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s`
/// is `1.0`, the result will be equal to `rhs`.
///
/// # Panics
///
/// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
#[inline]
#[doc(alias = "mix")]
pub fn lerp(self, end: Self, s: f64) -> Self {
glam_assert!(self.is_normalized());
glam_assert!(end.is_normalized());
let start = self;
let dot = start.dot(end);
let bias = if dot >= 0.0 { 1.0 } else { -1.0 };
let interpolated = start.add(end.mul(bias).sub(start).mul(s));
interpolated.normalize()
}
/// Performs a spherical linear interpolation between `self` and `end`
/// based on the value `s`.
///
/// When `s` is `0.0`, the result will be equal to `self`. When `s`
/// is `1.0`, the result will be equal to `end`.
///
/// # Panics
///
/// Will panic if `self` or `end` are not normalized when `glam_assert` is enabled.
#[inline]
pub fn slerp(self, mut end: Self, s: f64) -> Self {
// http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It/
glam_assert!(self.is_normalized());
glam_assert!(end.is_normalized());
const DOT_THRESHOLD: f64 = 0.9995;
// Note that a rotation can be represented by two quaternions: `q` and
// `-q`. The slerp path between `q` and `end` will be different from the
// path between `-q` and `end`. One path will take the long way around and
// one will take the short way. In order to correct for this, the `dot`
// product between `self` and `end` should be positive. If the `dot`
// product is negative, slerp between `self` and `-end`.
let mut dot = self.dot(end);
if dot < 0.0 {
end = -end;
dot = -dot;
}
if dot > DOT_THRESHOLD {
// assumes lerp returns a normalized quaternion
self.lerp(end, s)
} else {
let theta = math::acos_approx(dot);
let scale1 = math::sin(theta * (1.0 - s));
let scale2 = math::sin(theta * s);
let theta_sin = math::sin(theta);
self.mul(scale1).add(end.mul(scale2)).mul(1.0 / theta_sin)
}
}
/// Multiplies a quaternion and a 3D vector, returning the rotated vector.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
pub fn mul_vec3(self, rhs: DVec3) -> DVec3 {
glam_assert!(self.is_normalized());
let w = self.w;
let b = DVec3::new(self.x, self.y, self.z);
let b2 = b.dot(b);
rhs.mul(w * w - b2)
.add(b.mul(rhs.dot(b) * 2.0))
.add(b.cross(rhs).mul(w * 2.0))
}
/// Multiplies two quaternions. If they each represent a rotation, the result will
/// represent the combined rotation.
///
/// Note that due to floating point rounding the result may not be perfectly normalized.
///
/// # Panics
///
/// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
#[inline]
pub fn mul_quat(self, rhs: Self) -> Self {
glam_assert!(self.is_normalized());
glam_assert!(rhs.is_normalized());
let (x0, y0, z0, w0) = self.into();
let (x1, y1, z1, w1) = rhs.into();
Self::from_xyzw(
w0 * x1 + x0 * w1 + y0 * z1 - z0 * y1,
w0 * y1 - x0 * z1 + y0 * w1 + z0 * x1,
w0 * z1 + x0 * y1 - y0 * x1 + z0 * w1,
w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1,
)
}
/// Creates a quaternion from a 3x3 rotation matrix inside a 3D affine transform.
#[inline]
pub fn from_affine3(a: &crate::DAffine3) -> Self {
#[allow(clippy::useless_conversion)]
Self::from_rotation_axes(
a.matrix3.x_axis.into(),
a.matrix3.y_axis.into(),
a.matrix3.z_axis.into(),
)
}
#[inline]
pub fn as_f32(self) -> Quat {
Quat::from_xyzw(self.x as f32, self.y as f32, self.z as f32, self.w as f32)
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Debug for DQuat {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_tuple(stringify!(DQuat))
.field(&self.x)
.field(&self.y)
.field(&self.z)
.field(&self.w)
.finish()
}
}
#[cfg(not(target_arch = "spirv"))]
impl fmt::Display for DQuat {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(fmt, "[{}, {}, {}, {}]", self.x, self.y, self.z, self.w)
}
}
impl Add<DQuat> for DQuat {
type Output = Self;
/// Adds two quaternions.
///
/// The sum is not guaranteed to be normalized.
///
/// Note that addition is not the same as combining the rotations represented by the
/// two quaternions! That corresponds to multiplication.
#[inline]
fn add(self, rhs: Self) -> Self {
Self::from_vec4(DVec4::from(self) + DVec4::from(rhs))
}
}
impl Sub<DQuat> for DQuat {
type Output = Self;
/// Subtracts the `rhs` quaternion from `self`.
///
/// The difference is not guaranteed to be normalized.
#[inline]
fn sub(self, rhs: Self) -> Self {
Self::from_vec4(DVec4::from(self) - DVec4::from(rhs))
}
}
impl Mul<f64> for DQuat {
type Output = Self;
/// Multiplies a quaternion by a scalar value.
///
/// The product is not guaranteed to be normalized.
#[inline]
fn mul(self, rhs: f64) -> Self {
Self::from_vec4(DVec4::from(self) * rhs)
}
}
impl Div<f64> for DQuat {
type Output = Self;
/// Divides a quaternion by a scalar value.
/// The quotient is not guaranteed to be normalized.
#[inline]
fn div(self, rhs: f64) -> Self {
Self::from_vec4(DVec4::from(self) / rhs)
}
}
impl Mul<DQuat> for DQuat {
type Output = Self;
/// Multiplies two quaternions. If they each represent a rotation, the result will
/// represent the combined rotation.
///
/// Note that due to floating point rounding the result may not be perfectly
/// normalized.
///
/// # Panics
///
/// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
#[inline]
fn mul(self, rhs: Self) -> Self {
self.mul_quat(rhs)
}
}
impl MulAssign<DQuat> for DQuat {
/// Multiplies two quaternions. If they each represent a rotation, the result will
/// represent the combined rotation.
///
/// Note that due to floating point rounding the result may not be perfectly
/// normalized.
///
/// # Panics
///
/// Will panic if `self` or `rhs` are not normalized when `glam_assert` is enabled.
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = self.mul_quat(rhs);
}
}
impl Mul<DVec3> for DQuat {
type Output = DVec3;
/// Multiplies a quaternion and a 3D vector, returning the rotated vector.
///
/// # Panics
///
/// Will panic if `self` is not normalized when `glam_assert` is enabled.
#[inline]
fn mul(self, rhs: DVec3) -> Self::Output {
self.mul_vec3(rhs)
}
}
impl Neg for DQuat {
type Output = Self;
#[inline]
fn neg(self) -> Self {
self * -1.0
}
}
impl Default for DQuat {
#[inline]
fn default() -> Self {
Self::IDENTITY
}
}
impl PartialEq for DQuat {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
DVec4::from(*self).eq(&DVec4::from(*rhs))
}
}
#[cfg(not(target_arch = "spirv"))]
impl AsRef<[f64; 4]> for DQuat {
#[inline]
fn as_ref(&self) -> &[f64; 4] {
unsafe { &*(self as *const Self as *const [f64; 4]) }
}
}
impl Sum<Self> for DQuat {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::ZERO, Self::add)
}
}
impl<'a> Sum<&'a Self> for DQuat {
fn sum<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::ZERO, |a, &b| Self::add(a, b))
}
}
impl Product for DQuat {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = Self>,
{
iter.fold(Self::IDENTITY, Self::mul)
}
}
impl<'a> Product<&'a Self> for DQuat {
fn product<I>(iter: I) -> Self
where
I: Iterator<Item = &'a Self>,
{
iter.fold(Self::IDENTITY, |a, &b| Self::mul(a, b))
}
}
impl From<DQuat> for DVec4 {
#[inline]
fn from(q: DQuat) -> Self {
Self::new(q.x, q.y, q.z, q.w)
}
}
impl From<DQuat> for (f64, f64, f64, f64) {
#[inline]
fn from(q: DQuat) -> Self {
(q.x, q.y, q.z, q.w)
}
}
impl From<DQuat> for [f64; 4] {
#[inline]
fn from(q: DQuat) -> Self {
[q.x, q.y, q.z, q.w]
}
}