#[repr(C)]
pub struct Affine2 { pub matrix2: Mat2, pub translation: Vec2, }
Expand description

A 2D affine transform, which can represent translation, rotation, scaling and shear.

Fields§

§matrix2: Mat2§translation: Vec2

Implementations§

source§

impl Affine2

source

pub const ZERO: Affine2 = _

The degenerate zero transform.

This transforms any finite vector and point to zero. The zero transform is non-invertible.

source

pub const IDENTITY: Affine2 = _

The identity transform.

Multiplying a vector with this returns the same vector.

source

pub const NAN: Affine2 = _

All NAN:s.

source

pub const fn from_cols(x_axis: Vec2, y_axis: Vec2, z_axis: Vec2) -> Affine2

Creates an affine transform from three column vectors.

source

pub fn from_cols_array(m: &[f32; 6]) -> Affine2

Creates an affine transform from a [f32; 6] array stored in column major order.

source

pub fn to_cols_array(&self) -> [f32; 6]

Creates a [f32; 6] array storing data in column major order.

source

pub fn from_cols_array_2d(m: &[[f32; 2]; 3]) -> Affine2

Creates an affine transform from a [[f32; 2]; 3] 2D array stored in column major order. If your data is in row major order you will need to transpose the returned matrix.

source

pub fn to_cols_array_2d(&self) -> [[f32; 2]; 3]

Creates a [[f32; 2]; 3] 2D array storing data in column major order. If you require data in row major order transpose the matrix first.

source

pub fn from_cols_slice(slice: &[f32]) -> Affine2

Creates an affine transform from the first 6 values in slice.

Panics

Panics if slice is less than 6 elements long.

source

pub fn write_cols_to_slice(self, slice: &mut [f32])

Writes the columns of self to the first 6 elements in slice.

Panics

Panics if slice is less than 6 elements long.

source

pub fn from_scale(scale: Vec2) -> Affine2

Creates an affine transform that changes scale. Note that if any scale is zero the transform will be non-invertible.

source

pub fn from_angle(angle: f32) -> Affine2

Creates an affine transform from the given rotation angle.

source

pub fn from_translation(translation: Vec2) -> Affine2

Creates an affine transformation from the given 2D translation.

source

pub fn from_mat2(matrix2: Mat2) -> Affine2

Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation)

source

pub fn from_mat2_translation(matrix2: Mat2, translation: Vec2) -> Affine2

Creates an affine transform from a 2x2 matrix (expressing scale, shear and rotation) and a translation vector.

Equivalent to Affine2::from_translation(translation) * Affine2::from_mat2(mat2)

source

pub fn from_scale_angle_translation( scale: Vec2, angle: f32, translation: Vec2 ) -> Affine2

Creates an affine transform from the given 2D scale, rotation angle (in radians) and translation.

Equivalent to Affine2::from_translation(translation) * Affine2::from_angle(angle) * Affine2::from_scale(scale)

source

pub fn from_angle_translation(angle: f32, translation: Vec2) -> Affine2

Creates an affine transform from the given 2D rotation angle (in radians) and translation.

Equivalent to Affine2::from_translation(translation) * Affine2::from_angle(angle)

source

pub fn from_mat3(m: Mat3) -> Affine2

The given Mat3 must be an affine transform,

source

pub fn from_mat3a(m: Mat3A) -> Affine2

The given Mat3A must be an affine transform,

source

pub fn transform_point2(&self, rhs: Vec2) -> Vec2

Transforms the given 2D point, applying shear, scale, rotation and translation.

source

pub fn transform_vector2(&self, rhs: Vec2) -> Vec2

Transforms the given 2D vector, applying shear, scale and rotation (but NOT translation).

To also apply translation, use Self::transform_point2() instead.

source

pub fn is_finite(&self) -> bool

Returns true if, and only if, all elements are finite.

If any element is either NaN, positive or negative infinity, this will return false.

source

pub fn is_nan(&self) -> bool

Returns true if any elements are NaN.

source

pub fn abs_diff_eq(&self, rhs: Affine2, max_abs_diff: f32) -> bool

Returns true if the absolute difference of all elements between self and rhs is less than or equal to max_abs_diff.

This can be used to compare if two 3x4 matrices contain similar elements. It works best when comparing with a known value. The max_abs_diff that should be used used depends on the values being compared against.

For more see comparing floating point numbers.

source

pub fn inverse(&self) -> Affine2

Return the inverse of this transform.

Note that if the transform is not invertible the result will be invalid.

Trait Implementations§

source§

impl Clone for Affine2

source§

fn clone(&self) -> Affine2

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for Affine2

Available on non-target_arch="spirv" only.
source§

fn fmt(&self, fmt: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl Default for Affine2

source§

fn default() -> Affine2

Returns the “default value” for a type. Read more
source§

impl Deref for Affine2

§

type Target = Cols3<Vec2>

The resulting type after dereferencing.
source§

fn deref(&self) -> &<Affine2 as Deref>::Target

Dereferences the value.
source§

impl DerefMut for Affine2

source§

fn deref_mut(&mut self) -> &mut <Affine2 as Deref>::Target

Mutably dereferences the value.
source§

impl<'de> Deserialize<'de> for Affine2

source§

fn deserialize<D>( deserializer: D ) -> Result<Affine2, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl Display for Affine2

Available on non-target_arch="spirv" only.
source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
source§

impl From<Affine2> for Mat3

source§

fn from(m: Affine2) -> Mat3

Converts to this type from the input type.
source§

impl From<Affine2> for Mat3A

source§

fn from(m: Affine2) -> Mat3A

Converts to this type from the input type.
source§

impl Mul<Affine2> for Mat3

§

type Output = Mat3

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Affine2) -> <Mat3 as Mul<Affine2>>::Output

Performs the * operation. Read more
source§

impl Mul<Affine2> for Mat3A

§

type Output = Mat3A

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Affine2) -> <Mat3A as Mul<Affine2>>::Output

Performs the * operation. Read more
source§

impl Mul<Mat3> for Affine2

§

type Output = Mat3

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Mat3) -> <Affine2 as Mul<Mat3>>::Output

Performs the * operation. Read more
source§

impl Mul<Mat3A> for Affine2

§

type Output = Mat3A

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Mat3A) -> <Affine2 as Mul<Mat3A>>::Output

Performs the * operation. Read more
source§

impl Mul for Affine2

§

type Output = Affine2

The resulting type after applying the * operator.
source§

fn mul(self, rhs: Affine2) -> <Affine2 as Mul>::Output

Performs the * operation. Read more
source§

impl PartialEq for Affine2

source§

fn eq(&self, rhs: &Affine2) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl<'a> Product<&'a Affine2> for Affine2

source§

fn product<I>(iter: I) -> Affine2
where I: Iterator<Item = &'a Affine2>,

Method which takes an iterator and generates Self from the elements by multiplying the items.
source§

impl Serialize for Affine2

source§

fn serialize<S>( &self, serializer: S ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl Zeroable for Affine2

source§

fn zeroed() -> Self

source§

impl Copy for Affine2

source§

impl Pod for Affine2

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CheckedBitPattern for T
where T: AnyBitPattern,

§

type Bits = T

Self must have the same layout as the specified Bits except for the possible invalid bit patterns being checked during is_valid_bit_pattern.
source§

fn is_valid_bit_pattern(_bits: &T) -> bool

If this function returns true, then it must be valid to reinterpret bits as &Self.
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T> ToString for T
where T: Display + ?Sized,

source§

default fn to_string(&self) -> String

Converts the given value to a String. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

source§

fn vzip(self) -> V

source§

impl<T> AnyBitPattern for T
where T: Pod,

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

source§

impl<T> NoUninit for T
where T: Pod,